Some vector fields on a riemannian manifold with semi-symmetric metric connection
Authors
Abstract:
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
similar resources
some vector fields on a riemannian manifold with semi-symmetric metric connection
in the first part of this paper, some theorems are given for a riemannian manifold with semi-symmetric metric connection. in the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. we obtain some properties of this manifold having the vectors mentioned above.
full textNon-degenerate Hypersurfaces of a Semi-riemannian Manifold with a Semi-symmetric Metric Connection
We derive the equations of Gauss and Weingarten for a non-degenerate hypersurface of a semi-Riemannian manifold admitting a semi-symmetric metric connection, and give some corollaries of these equations. In addition, we obtain the equations of Gauss curvature and Codazzi-Mainardi for this non-degenerate hypersurface and give a relation between the Ricci and the scalar curvatures of a semi-Riema...
full textOn Submanifolds in a Riemannian Manifold with a Semi-Symmetric Non-Metric Connection
In this paper, we study submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection on a submanifold is also semi-symmetric non-metric connection. We consider the total geodesicness and minimality of a submanifold with respect to the semi-symmetric non-metric connection. We obtain the Gauss, Cadazzi, and Ricci equations for submanifold...
full textOn some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection
We study submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection is also a semi-symmetric non-metric connection. We consider the total geodesicness, total umbilicity and the minimality of a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection. We have obtained the Gauss, Codazzi and Ricci equations wit...
full textAscreen Lightlike Hypersurfaces of a Semi-riemannian Space Form with a Semi-symmetric Non-metric Connection
We study lightlike hypersurfaces of a semi-Riemannian space form M̃(c) admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of M̃(c), which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodes...
full textCasorati Inequalities for Submanifolds in a Riemannian Manifold of Quasi-Constant Curvature with a Semi-Symmetric Metric Connection
By using new algebraic techniques, two Casorati inequalities are established for submanifolds in a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection, which generalize inequalities obtained by Lee et al. J. Inequal. Appl. 2014, 2014, 327.
full textMy Resources
Journal title
volume 38 issue 2
pages 479- 490
publication date 2012-07-15
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023